Химия редкоземельных элементов

3 группа **ДПВПС** — самая большая, она включает Sc, Y, La, лантаниды (58→71), Ac, актиниды (90→103)

Всего 32 элемента (~ 50% всех металлов)

РЗЭ называют Sc, Y, La и 14 лантанидов (от Ce до Lu)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.A	HA	шв	IV B	VВ	VI B	VIIB	,	7.111 B		113	11 B	ША	IV A	VA	VIA	VIIA	VIIIA
1	1 (H)																1 H	2 He
2	3 Li	4 Be										1373	5 B	6 C	7 N	8	9 F	10 Ne
3	11 Na	12 Mg							Name of the last				13 A1	14 Si	15 P	16 S	17 Cl	18 Ar
٠ ١	19 K	20 Ca	:1 Se	ri Ti	2.1 V	PA Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	3.3 As	34 Se	35 Br	36 Kr
5	:: Rb	as Sr	9 Y	Zr	11 Nb	12 Mo	13 Tc	34 Ru	35 Rh	46 Pd	47 Ag	18 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
6	33. 134	la. Ba	ī.	72 111	7.: Ta	71 W	75 Re	7ii Os	77 Tr	78 Pt	79 Au	S0 Hg	81 Tl	S2 Pb	83 Bi	Si Po	85 At	56 Rn
7	s: , Fr	88 Ra	50 • • Ac	101	(105)	(104)	(107)	(108)	(109)	(110)	(111)	(112)	(113)	(114)	(115)	(116)	(117)	(118)
8	(119)	(120)	(121)	(154)	(155)	(156)	(157)	(158)	(159)	(160)	(161)	(162)	(163)	(164)	(165)	(166)	(167)	(168)

* Лантанопды	.s Ce	59 Pr	Nd	Pm	62 Sm	Eu	64 Gd	65 Tb	GG Dy	G7 Ho	G8 Er	69 Tm	70 Yb	71 Lu
										99 Es	100 Em			

(153)

[(122)] (123) [(123)]

*** Суперактинонды

Две подгруппы РЗЭ:

цериевая (La, Ce, Pr, Nd, Pm, Sm, Eu)

иттриевая (Sc, Y, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu)

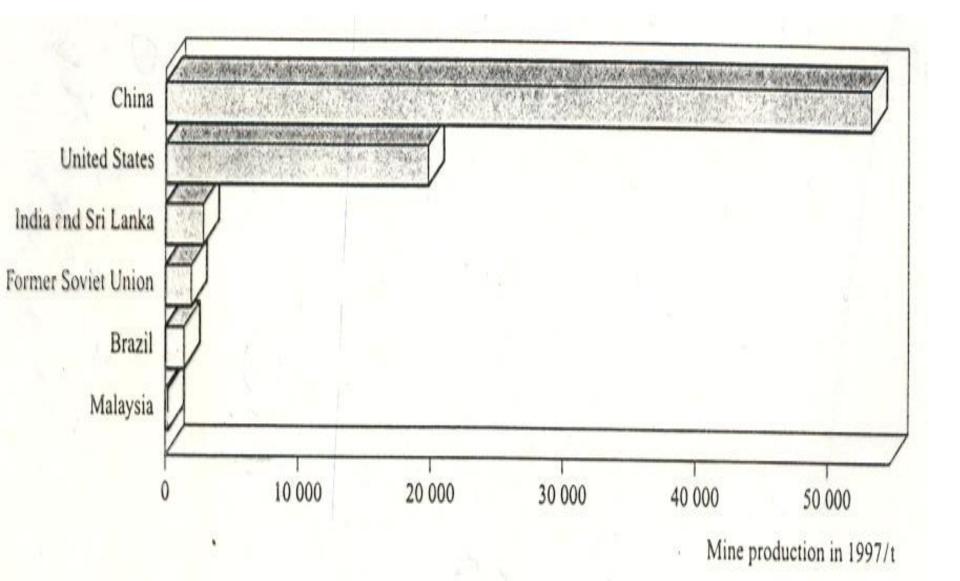
Деление основано на природ. распростр.,

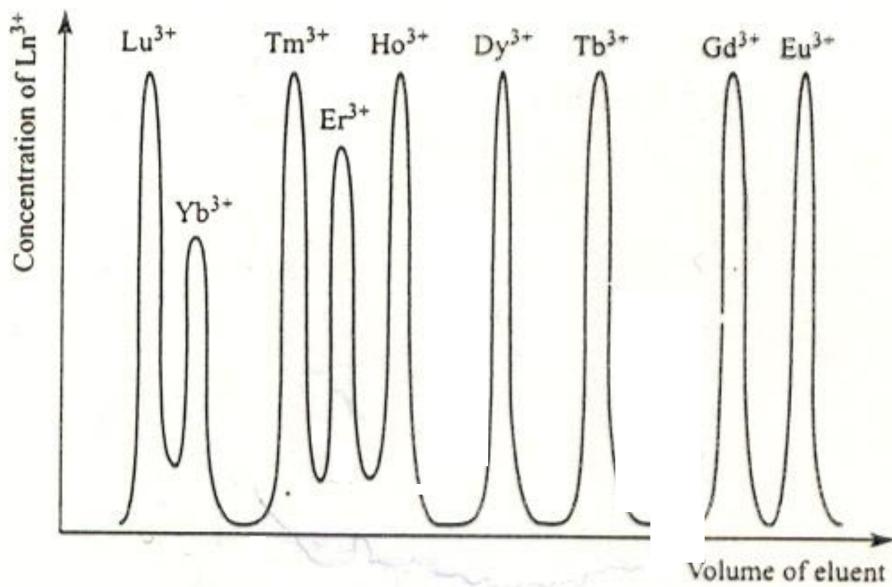
относит. массе и технологии разделения

~ 170 минералов РЗЭ

```
монацит (Ce, La, Nd, ...)PO_4
                                                 Th содер-
 церит Ce_2Si_2O_7 \cdot H_2O
                                                 жащие ми-
                                                    нералы
 лопарит (Na, Ca, Cl)<sub>2</sub>(Ti, Nd, Ta)<sub>2</sub>O<sub>6</sub>
 ксенотим (Y, Gd, ...)PO<sub>4</sub>
                                                 содерж.
 эвскенит YNbTiO<sub>6</sub>
                                                минералы
Распространенность Sc вдвое больше, чем В
Tm (самый редкий РЗЭ) > Ag, Cd, Hg, Se
```

«Иттриевая земля» — обнаружена в конце 18 в. швед. химиком Гадолиным «Цериевая земля» — выделена в начале 19 в. Берцелиусом


Открытие и выделение отдельных РЗЭ – весь 19 в., последний Рт открыт в США в 1945 г. (только р/а изотопы)


$Sc - концентрат \rightarrow ScF_3 \rightarrow Sc$

Проблема разделения РЗЭ — дробная кристаллизация двойных сульфатов и нитратов

Сейчас – хроматография (подвижная и неподвижная фазы)

экстракция – (разделение с органическими растворителями)

Переработка монацита (Ce, La, Nd, Pr, Th ...)PO₄ + NaOH, при нагреве

+ НС1 при нагреве

 $ThO_2 + LnCl_3$ (осад) раздел-е

восст-е

$$Ln^{3+}$$
 (p-p) + $3H^+$ (ион/обм. смолы) \rightarrow Ln^{3+} (смола) + $3H^+$

EDTA-комплексы

H₄EDTA

 $Sc \rightarrow [Ar]3d^14s^2$,

 $Y \rightarrow [Kr]4d^15s^2$

Естественный ряд элементов

 $Ba \rightarrow La$

6p 5d 4*f*

 $[Xe]6s^2$

 $4d^{10}5s^25p^6 \cdot 6s^2 \quad (n+l) \quad 6+1 \quad 5+2 \quad 4+3 \quad \Sigma = 7$

Вопреки правилу Клечковского $5d^1$ вместо $4f^1$,

согласно правилу Клечковского

Pr

Eu

 $5d^1$ вместо $4f^8$,

(правило Клечковского)

 $[Xe]6s^2$ $5d^1$

 $[Xe]6s^2$ $5d^1$

[Xe] $6s^2$ $5d^0$ $4f^3$

[Xe]6s² $\int 5d^0 4f^7$

 $[Xe]6s^2$ $5d^1$

[Xe]6s² | 5d⁰ $4f_1^9$

[Xe] $6s^2$ $5d^0$ $4f^{14}$ [Xe] $6s^2$ $5d^1$ $4f^{14}$

Вторичная периодичность

 Ln^{3+}

 Gd^{3+}

Число несп.

f эл-ов

 $4f^0 \rightarrow 4f^{14}$

 f^0 La³⁺ б/ц

б/ц

 f^1 Ce³⁺ б/ц

 Tb^{3+} posob.

 f^2 Pr³⁺ зел. Dy^{3+}

 f^3 Nd³⁺ красн.

 $\frac{3}{1000}$

желт.

 f^4 Pm³⁺ желт.

желт.

 f^{10}

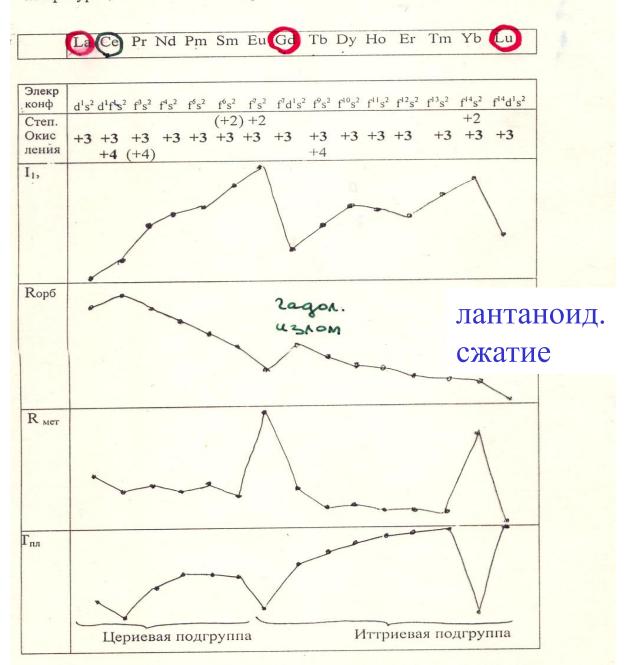
красн.

 f^{11}

 f^5 Sm³⁺ желт.

 $5 Tu^{3+}$ зел. $2 f^{12}$

 Lu^{3+}


 Er^{3+}

1
$$f^{13}$$

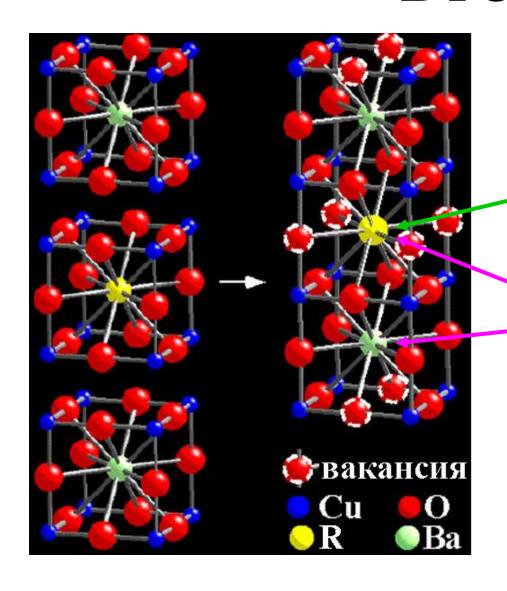
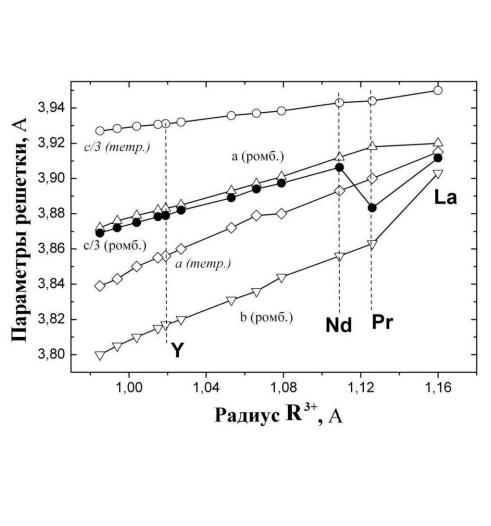

$$f^{14}$$

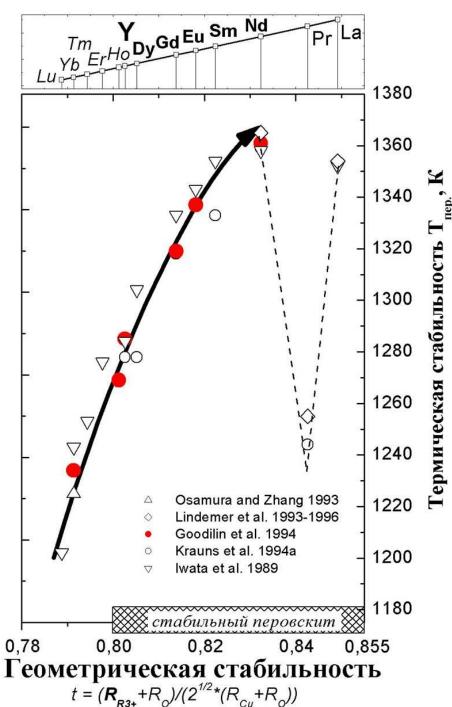
 Таблица
 1.
 Закономерности
 в заполнении
 электронной

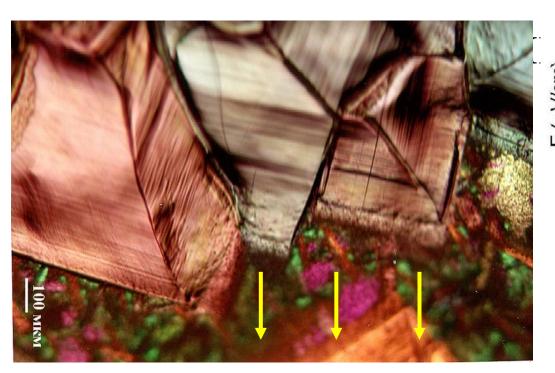
 конфигурации атомов и некоторых свойств лантана и лантанидов.

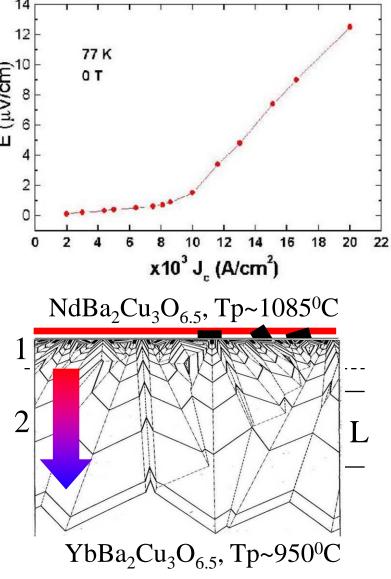
ВТСП

РЗЭ-бариевые купраты:


(R,R₁)Ba₂Cu₃O_z (R=Y, R₁=Nd, Sm, Eu, Gd, Dy, Ho, Yb)


 $R(Ba_{1-x/2}R_{x/2})_2Cu_3O_z$ (R=Nd, Sm, Eu, Pr).


Кислород-дефицитные перовскитоподобные фазы с широкими областями катионной и анионной гомогенности и структурно-чувствительными свойствами


Влияние РЗЭ

«Селекция» («выживание») наиболее быстрых направлений в ансамбле растущих кристаллитов предопределяет направление развития всего ансамбля (текстура)

Идея: G.J.Schmitz, ACCESS e.V.

$$M^{3+}(p-p)+3e^1=M_{TB}$$
 E^0 $-E^0(B)$ самый сильн. восст-ль La^{3+}/La 2.52 Gd^{3+}/Gd 2.40 Ce^{3+}/Ce 2.48 Tb^{3+}/Tb 2.39 Pr^{3+}/Pr 2.47 Dy^{3+}/Dy 2.35 2.44 2.32 2.42 2.30 2.41 2.28 Eu^{3+}/Eu 2.41 Yb^{3+}/Yb 2.27 Lu^{3+}/Lu 2.25

Как ведет себя метал. La в растворе Lu³⁺?

$$Lu^{3+} + La = Lu + La^{3+}$$

ЭД
$$C = 0.27 B$$

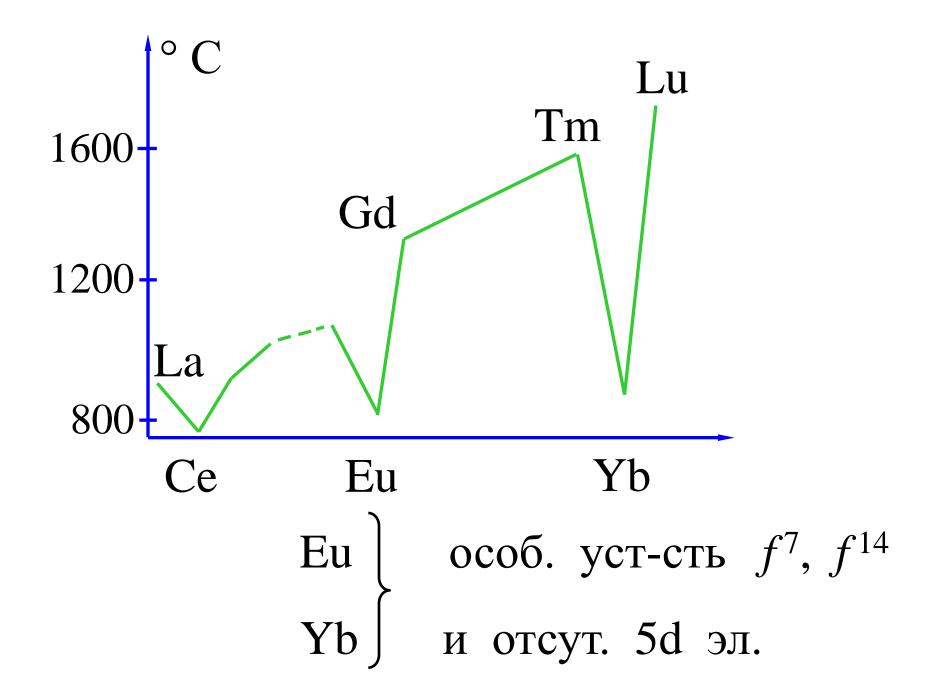
Энтальпия сублимации $M_{\scriptscriptstyle K} \to M_{\scriptscriptstyle \Gamma}$ (ккал/моль) 103.0 Gd 95.7 La

Ce 111.6 93.0 Tb

Pr 89.1 Dy 71.4

70.0 Nd 78.3 Ho

63.0 Pm Er 66.4


49.5 59.1 Sm Tm 42.1 36.3 Eu Yb

Lu 102.2 Доля участия 4f и 5d электронов в образовании связи $\Delta H^{\circ}_{\text{субл}} - 36.3$

•		CyOs	1
	$(\Delta H^{\circ}_{\text{субл}} - 3)$	36.3) ккал/	МОЛЬ
La	66.7	Gd	59.4
Ce	(75.3)	Tb	56.7
Pr	52.8	Dy	34.9
Nd	42.0	Но	33.7
Pm	26.7	Er	30.1
Sm	13.2	Tm	22.8
Eu	5.8	Yb	(0)
		Lu	65.9

Температуры плавления, °С

La	920	Gd	1312
Ce	797	Tb	1364
Pr	935	Dy	1407
Nd	1024	Ho	1461
Pm		Er	1497
Sm	1072	Tm	1547
Eu	826	Yb	824
		Lu	1652

 $9 + H_2O + CO_2 \rightarrow x9(OH)_3 \cdot y9_2(CO_3)_3 \cdot zH_2O$

(слитки La, Ce, Pr рассыпаются за неск. часов)

Цериевые металлы активней иттриевых

$$9 + HNO_3 (H_2SO_4) \rightarrow$$

$$9 + HC1 (CH_3COOH) \rightarrow$$

$$9 + O_2, H_2, Cl_2, C, S, P \rightarrow$$

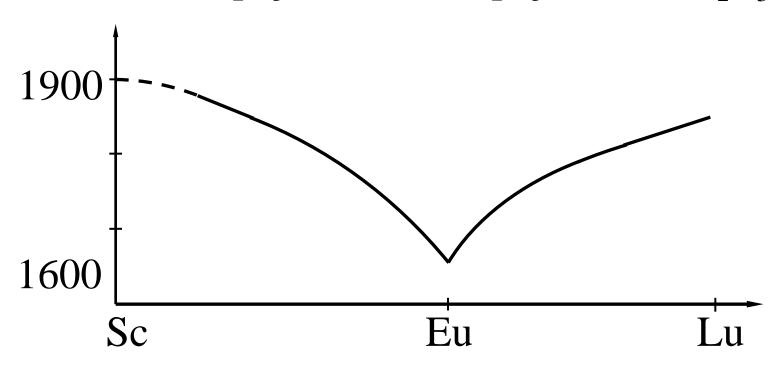
$$9 + H_2O \rightarrow 9(OH)_3 + H_2$$

Применение более 100 лет назад – ферроцерий, мишметалл (смесь РЗЭ) раскислитель чугуна и изменение микроструктуы

- легирование Мg и Al сплавов
- SmCo₆ и SmFeCu магниты
- LaNi $_5$ аккумуляторы H_2
- CeO₂, BaCeO₃ ионика YBa₂Cu₃O₇ (La, Nd, Sm, Gd, Eu)

Соединения РЗЭ

простые	Э	Все РЗЭ	выс. хим.
вещества			акт-сть
оксиды	Θ_2O_3	Все РЗЭ	склонност
	Θ_2	Ce, Pr, Tb	к гидр-ци
	$9_{6}O_{11}$	Pr	у цериево
	0 11		полгруппн


ОСТЬ Tb Θ_4O_7

ЦИИ евой подгруппы $\Im(OH)_3 \cdot aq$ Bce P33 гидроксиосновные св-ва, ДЫ $\Theta(OH)_4 \cdot aq$ Ce, Tb плохо р-мы

раствор.	$\Im X_3$	Bce	слабый
(средние)	$\Im(\mathrm{NO}_3)_3$	Р3Э	гидролиз
соли	$\Theta_2(SO_4)_3$		
	$\Im(CH_3COOH)_3$		
нераств.	$\Theta_2(CO)_{3-x}(OH)_x$	Bce	
соли	$\Im(OH)X_2$	Р3Э	
	$\Im F_3 \cdot nH_2O$		
	$\Theta_2(C_2O_4)_3 \cdot nH_2O$		

РЗЭ оксиды простые и сложные

 $-\Delta \mathrm{H}^{\circ}_{f}$, где для $\mathrm{Ln_{2}O_{3}}$ от 1910 ($\mathrm{Sc_{2}O_{3}}$) до 1660 ($\mathrm{Eu_{2}O_{3}}$) (для $\mathrm{Al_{2}O_{3}}$ 1676)

$$La_2O_3 + Na_2CO_3 \rightarrow 2NaLaO_2 + CO_2^{\uparrow}$$

 $CeO_2 + BaCO_3 \rightarrow BaCeO_3 + CO_2^{\uparrow}$

Фториды РЗЭ

$-\Delta \mathbf{H}^{\circ}_{f}$, где	ScF ₃	YF_3	LaF ₃	NdF ₃	EuF ₃
кДж/моль	1650	1720	1730	1712	1620
	GdF ₃	DyF ₃	ErF ₃	YbF ₃	LuF ₃
	1715	1720	1725	1660	1700

Сульфиды

 $\exists S, \ \exists_2 S_7, \ \exists_3 S_4, \ \exists_2 S_3, \ \exists S_2$ (переменный состав фазы внедрения металла в $9_{2}S_{3}$) сплавление металлов с серой <u>Нитриды</u> 3N - c выс. $t_{\pi\pi}$

 Карбиды
 ЭС

 Силициды
 ЭSi
 и
 ЭSi

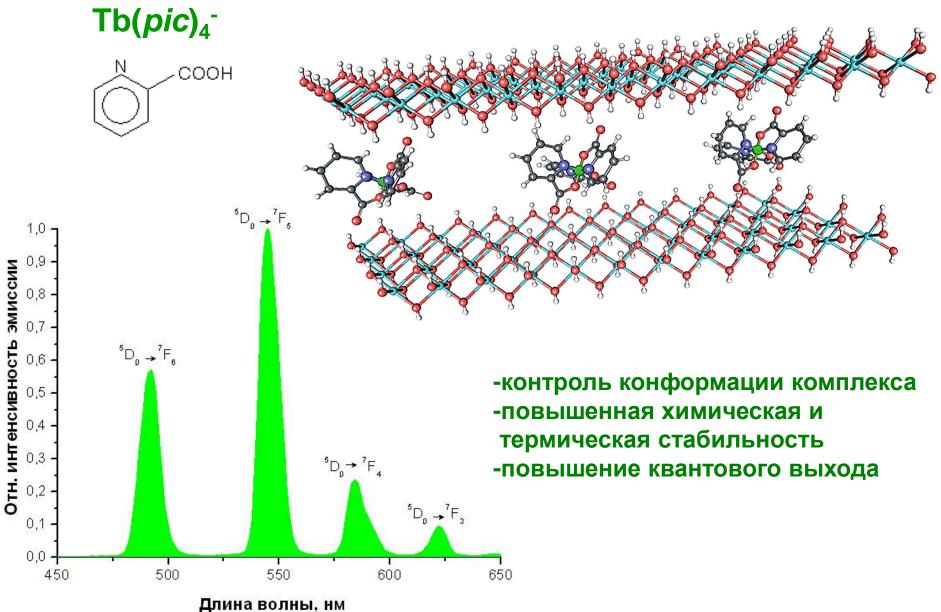
Бориды

 Θ_2 (Sc, Y, Lu)

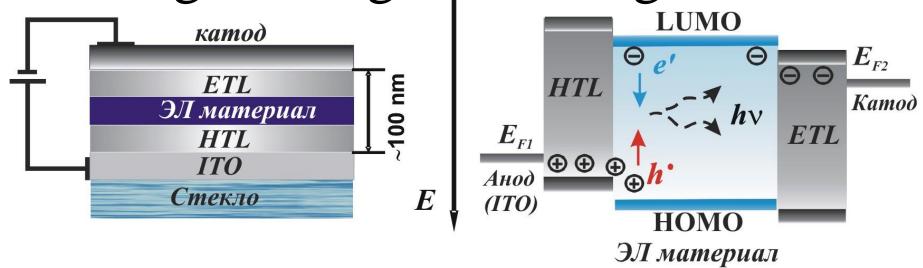
ЭВ₆ (для всех РЗЭ)

металлоподобны, выс. t_{nn}

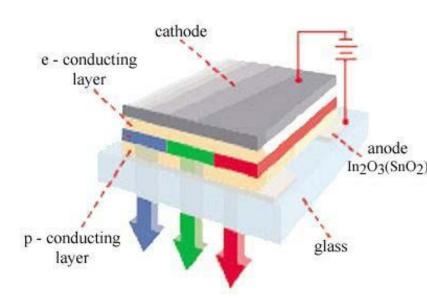
твердость и электропровод-

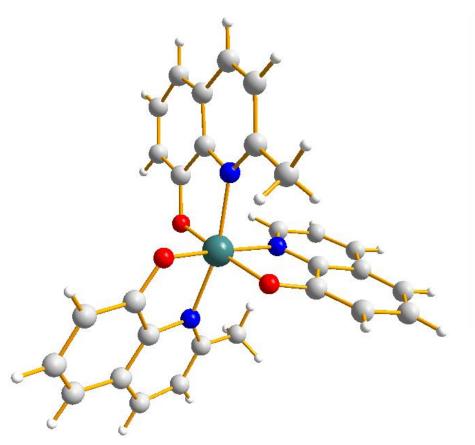

водность

<u>Гидриды</u> ЭН₂ (Sc, Eu, Yb)

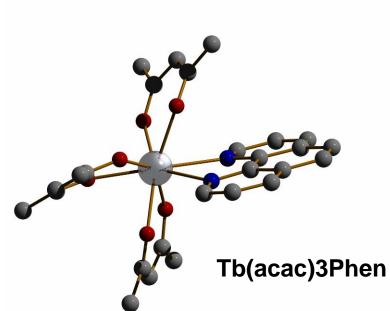

 $9H_2$ и $9H_3$ (все остальные РЗЭ)

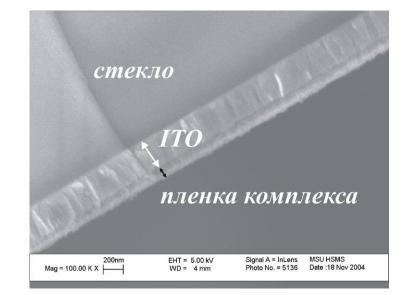
фазы внедрения, металлоподобны

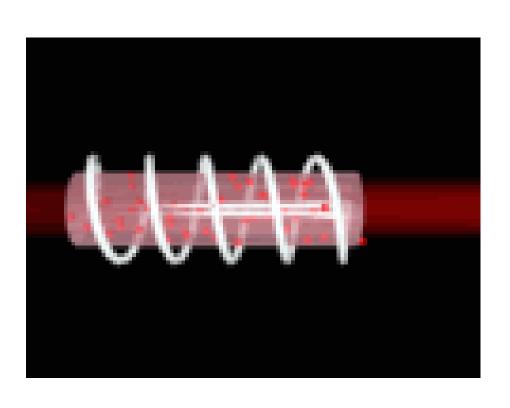

Гибридный люминесцентный материал

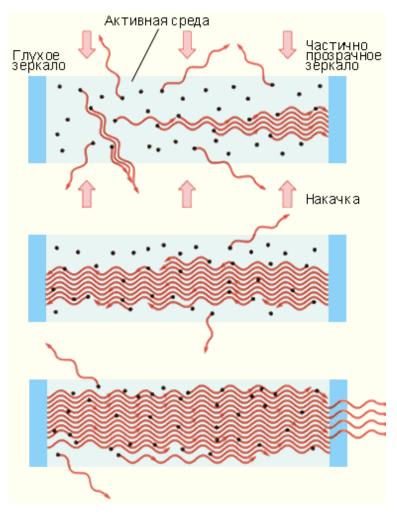


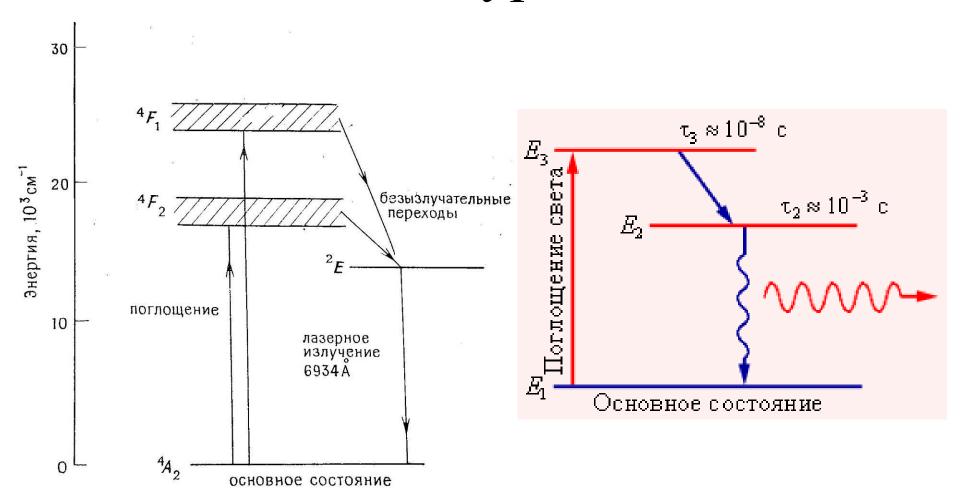
Organic Light Emitting Diode




Нижняя свободная молекулярная орбиталь (LUMO) вещества ЭЛ материала ~ аналогична краю зоны проводимости в полупроводниковых материалах; транспорт дырок — через высшую занятую молекулярную орбиталь (HOMO), ~ аналогичную валентной зоне в полупроводниках.


1987 г. (*C.W. Tang* и *S.A. VanSlyke*) - многослойное устройство на основе комплекса алюминия с 8-гидроксихинолином (AlQ3).




Рубиновый лазер

монокристалл Al_2O_3 , легированный (~0,05 масс. % Cr^{3+})

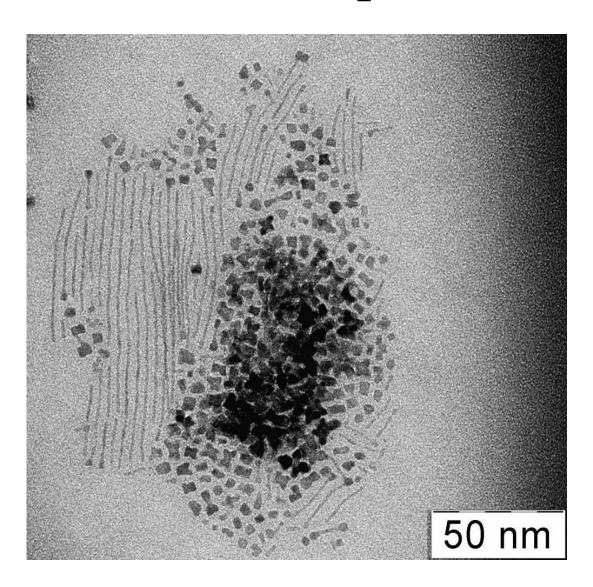
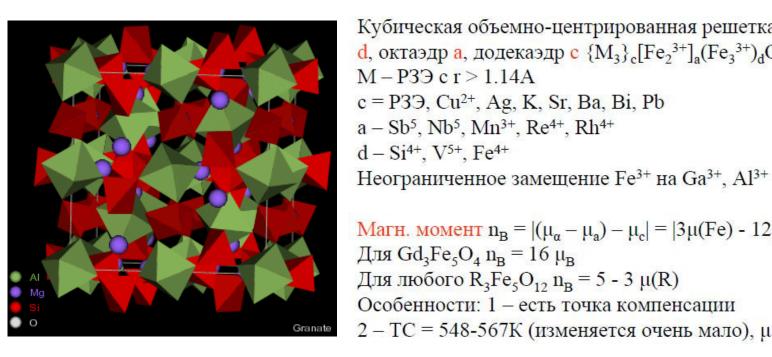


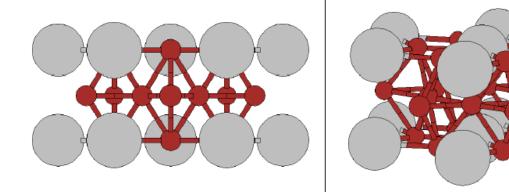
Схема уровней


Энергетические уровни иона Сг³⁺ и лазерное излучение в крист ле рубина.

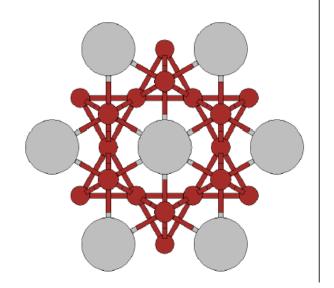
Диоксид церия как биоматериал

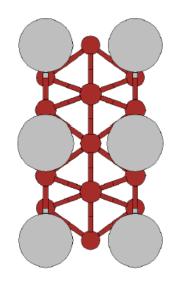
Снятие «окислительного стресса» клеток (Ce(IV) – Ce(III)) (ИОНХ РАН)

Феррогранаты



Кубическая объемно-центрированная решетка ионов О – тетраэдр d, октаэдр a, додекаэдр c $\{M_3\}_c[Fe_2^{3+}]_a(Fe_3^{3+})_dO_{12} - 1/8$ э.я. M - P39 c r > 1.14Ac = P39, Cu^{2+} , Ag, K, Sr, Ba, Bi, Pb a – Sb⁵, Nb⁵, Mn³⁺, Re⁴⁺, Rh⁴⁺ $d - Si^{4+}, V^{5+}, Fe^{4+}$


Магн. момент $n_B = |(\mu_\alpha - \mu_a) - \mu_c| = |3\mu(Fe) - 12\mu(Fe) - 3\mu(R)|$ Для $Gd_3Fe_5O_4$ $n_B = 16$ μ_B Для любого $R_3 Fe_5 O_1$, $n_R = 5 - 3 \mu(R)$ Особенности: 1 – есть точка компенсации 2 - TC = 548-567 K (изменяется очень мало), μ - разные


Цилиндрические домены для магнитной записи Магнитооптические пленки

Аккумуляторы водорода

 $H_2 + LaNi_5$

Применение РЗЭ

- светоизлучающие диоды
- фосфоры
- лазеры
- ферриты $Ln_3Fe_5O_{12}$
- ВТСП
- катализаторы
- постоянные магниты
- сплавы
- магнитооптические пленки
- . . .

Контрольная работа

- Назовите любые ДВА метода анализа (из материалов предыдущей лекции), которых будет ДОСТАТОЧНО, чтобы «распознать»:
- 1 вариант: кристобалит SiO2, кварцевое стекло, гель кремниевой кислоты
- 2 вариант: наноалмазы, бриллиант, алмазная пленка
- 3 вариант: углеродные нанотрубки, графит, фуллерен
- 4 вариант: **Ni**, **Ni**(**OH**)₂, **NiO**
- Поясните КРАТКО Ваш выбор (почему ЭТИ методы?)
- 10 минут на решение
- Листки любые, но пронумерованные и с подписью (ФИО четко)